
IPARTLEARNING TO CODE





1How Important is
Programming?

“To understand computers is to know about programming. The world is divided… into
people who have written a program and people who have not.”

Ted Nelson, Computer Lib/DreamMachines (1974)

How important is it for you to learn to program a computer?
Since the introduction of the first digital electronic computers in the 1940s,

people have answered this question in surprisingly different ways.
During the first wave of commercial computing—in the 1950s and 1960s, when

large andexpensivemainframecomputersfilled entire rooms—the standardadvice
was that only a limited number of specialists would be needed to program com-
puters using simple input devices like switches, punched cards, and paper tape.
Even during the so-called “golden age” of corporate computing in America—the
mid- to late 1960s—it was still unclear howmany programming technicians would
be needed to support the rapid computerization of the nation’s business, military,
and commercial operations. For a while, some experts thought that well-designed
computer systems might eventually program themselves, requiring only a handful
of attentivemanagers to keep an eye on themachines.

By the late 1970s and early 1980s, however, the rapid emergence of personal
computers (PCs), and continuing shortages of computer professionals, shifted
popular thinking on the issue. When consumers began to adopt low-priced PCs
like the Apple II (1977), the IBM PC (1981), and the Commodore 64 (1982) by the
millions, it seemed obvious that ground-breaking changes were afoot. The “PC
Revolution” opened up new frontiers, employed tens of thousands of people, and
(according to some enthusiasts) demanded new approaches to computer literacy.
As Ted Nelson, a prolific inventor and computing advocate wrote, “You can and
must understand computers NOW!” On learning to program computers, Nelson
energetically compared programming to another American obsession—driving an



4 Chapter 1 How Important is Programming?

Figure 1.1 American school children experiment with computer programming using teletype
machines (1970s). (Courtesy of the Computer History Museum)

automobile. “If you’ve never written a program, it’s like never having driven a car,”
Nelson instructed. “You may get the general idea, but you may have little clear
sense of the options, dangers, constraints, possibilities, difficulties, limitations,
and complications.”1

Ted Nelson was not alone. By the late 1970s, scores of programming advocates
recommended that people of all ages learn to code as a way of understanding what
theworld’smost intriguingdeviceswere capable of.Computer programming—apro-
cess of formulating a problem for the computer to solve, writing instructions in a
given computer language, loading instructions into the computer’s memory, run-
ning the program, and correcting errors—had emerged as a major late-night pas-
time and (for some) a promising profession. In response to the mandate of Nelson
and others, a surge of interest in programming developed, and the number of peo-
ple who could write at least elementary programs grew from several thousand in

1.TedNelson,ComputerLibDreamMachines (Self-published, 1974;MicrosoftPress revisededition,
1987), 40.



1.1 Programming Culture 5

the early 1950s intomillions by the early 1980s. (See Figure 1.1.) This sea change in
computational literacy encouraged thewidespreadadoptionof computers, boosted
the global economy, and shaped the contours of themodern information age.

1.1 Programming Culture
This book is about the rise of computer programmers and the emerging social,
technical, and commercial worldview that I call programming culture, which took
a distinctive form during the early decades of microcomputers and personal com-
puting, c. 1970–1995. It is a popular history of coding that explores the experiences
of novice computer users, tinkerers, hackers, and power users, as well as the ideals
and aspirations of computer scientists, educators, engineers, and entrepreneurs.
A central part of this story is the learn-to-program movement, which germinated
in government and university labs during the 1950s, gained momentum through
counterculture experiments in the 1960s and early 1970s, became a broad-based
educational agenda in the late 1970s and early 1980s, andwas transformed by com-
mercialization practices in the 1990s and 2000s. The learn-to-program movement
sought to make computers more understandable, imprint useful technical skills,
establish shared values, build virtual communities, and offer economic opportuni-
ties for technology enthusiasts. The movement also supported user communities,
schools, and emerging commercial industries, many of which benefited from the
utility and connectivity provided by digital electronic computers.

The learn-to-program movement had its ups and downs, but eventually set
the stage for 21st century expressions of computational literacy, such as the Hour
of Code, YouTube and Lynda courseware, certification programs, coding boot
camps, and university degrees in disciplines such as computer science, software
engineering, information technology, artificial intelligence, and (most recently)
human–computer interaction. As the title of this book suggests, the learn-to-
programmovement fostered a groundswell of popular support for computing cul-
ture in America, resulting inwhat I call aCodeNation—aglobally-connected society
that is saturated with computer technology and enchanted by software and its
creation.

The learn-to-program movement (or more broadly, the software-maker
movement) has inspired both disciples and critics. It has evolved over time and
its advocates have traversed numerous professional boundaries and cultural insti-
tutions. The movement is historically distinct but also follows the patterns and
rhythms of earlier socio-technical transformations, including the introduction of
steam-powered technologies during the Industrial Revolution, the electrification
of American businesses and homes, and the production of automobiles and “car
culture” in the early 20th century.



6 Chapter 1 How Important is Programming?

Borrowing terminology from information science and the history of technol-
ogy, the learn-to-program movement is identifiable as part of the “diffusion” and
“domestication” phases that take placewhen a successful new technology is spread
or “propagated” across society.2 Scholars from the field of business and economic
history also recognize this transition as a key period in which a new discovery
or invention is widely adopted and made useful for the general public, resulting
in new consumer behaviors and potential changes in the way that a market or
the broader economy functions.3 To achieve wide-spread diffusion, the movement
often benefits from sustaining ideologies that strengthen the allegiance of follow-
ers and justify the time, resources, and commitment that are necessary for the
movement’s success.

Beyond hopes for material gain, America’s expanding programming culture
can also be viewed as a manifestation of the deep and abiding cultural tendency
that many describe as “technological enthusiasm.”4 Technological enthusiasm is
an upbeat, optimistic appraisal of new technical systems that not only stoke the
engines of capitalism, but provide access to the ideals embedded in what is known
as the American Project and the American Dream. The publishers of PC software
systems readily participated in this vision, as each wave of entrepreneur–engineer
strived to improve their software, best their rivals, and boost the productivity of cor-
porations and the general public. By the 1980s, software creation had taken the
form of a consensus ideology that united many Americans in a common, acces-
sible dream of a better future through computing. As I will discuss in Chapter 2,
this enthusiasm brought additional computing mythologies to the fore, and their
collective use contributed to the positive view that American’s held about PCs and
software in the years to come.

2. See Computerization Movements and Technology Diffusion: From Mainframes to Ubiquitous Com-
puting, edited by Margaret S. Elliott and Kenneth L. Kraemer (Medford, NJ: Information Today,
Inc., 2008).

3. For a discussion of the phases that take place when a new consumer technology is introduced,
see Joseph J. Corn, User Unfriendly: Consumer Struggles with Personal Technologies, from Clocks and
Sewing Machines to Cars and Computers (Baltimore, MD: Johns Hopkins University Press, 2011).
Also useful is Claude S. Fischer, America Calling: A Social History of the Telephone to 1940 (Berkeley:
University of California Press, 1994); and the essay collection Does Technology Drive History? The
Dilemma of Technological Determinism, eds. Merritt Roe Smith and LeoMarx (Cambridge, MA: The
MIT Press, 1994).

4. See Thomas P. Hughes, American Genesis: A Century of Invention and Technological Enthusiasm,
1870–1970, SecondEdition (Chicago: University of Chicago Press, 2004); David A.Hounshell, From
the American System to Mass Production, 1800–1932: The Development of Manufacturing Technology
in the United States (Baltimore, MD: The Johns Hopkins University Press, 1984).



1.2 Learning a Language 7

1.2 Learning a Language
By the late 1960s, programming emerged from America’s research labs and
government institutions to have a direct influence on universities, primary and
secondary schools (K-12 in the U.S.), and the nation’s businesses. But what type of
mental activity did programming entail? How should students take their first steps
when learning to program a computer? In search of an analogy, some specialists
suggested that learning to program was a bit like learning to read or speak in a for-
eign language. Utilizing the comparison, some educators pressed for the inclusion
of computer languages in their school’s curriculum.Rather than takinga yearor two
ofaspoken language, suchasSpanishorGerman,a few innovativeprogramsoffered
courses in computer language instruction, including FORTRAN, Logo, BASIC, and
Pascal.

School administrators eager to provide practical job training (and to mollify
prospective students and their parents) broadened the definition of “foreign lan-
guage” to include instruction in computer languages, algorithms, and database
management. The popular press advocated for coding instruction in news-
papers and special reports, and computer book and magazine publishers released
hundreds of titles to help students build simple applications for time-sharing
systems and the first PCs.

No one argued that computer languages were the same as human languages,
of course. But programming advocates pointed to the many parallels that they
observed in the structure of spoken and computer grammars, and to the ways that
basic logic and reasoning were gradually introduced to students. Instruction in
programming seemed to permit access to the private world of a computer and its
“brain” or central processing unit (CPU). Programming was also portrayed as a
valuable exercise in logical thinking and problem solving. It was a mental activ-
ity that provided a conceptual introduction to how computers worked, as well as
a deep dive into logic and syntax. For all these reasons, computer literacy advo-
cates recommended that those who planned to use computers in the future should
learn to code as soon as possible. “Even if you don’t write programs yourself,”
Ted Nelson advised in 1974, “youmay have to work with people who do.”5

In the early years of the electronic computer revolution, it was the imposing
image of the new machines that seemed to fascinate the public. The physicality
of mainframe computers was reinforced by images of large devices whirring and
blinking in popular films such as Desk Set (1957), 2001: A Space Odyssey (1968),
Colossus: The Forbin Project (1970), Logan’s Run (1976), and War Games (1983). As
computers became more reliable and better understood, however, the focus of

5. Nelson, Computer Lib, 43.



8 Chapter 1 How Important is Programming?

popular attention turned away from computing machinery to software, the pro-
grams that ran on computers, and the coding experts who wrote code in high-
level languages like FORTRAN, COBOL, BASIC, and C. The computer industry went
throughmany transitions in the 1960s and 1970s, addingminicomputers andother
special-purpose machines. Gradually, the attention of the computing community
shifted from scientific and military systems to the application software that pow-
ered new types of businesses and helped themmanage information.

By the 1980s and 1990s, it became apparent that there were not enough quali-
fied programmers to design, build, andmaintain the software systems needed in the
U.S. as the country expanded its computational interests into new areas. Although
the academic discipline of computer science had taken shape in America’s colleges
and universities, these programs could not graduate enough scientists and engi-
neers to satisfy the industry’s needs. The situation was much the same in the rest
of the computerized world, in schools andmarkets stretching from Europe to Asia.
Journalist Clive Thompson has written about it this way: “If you look at the history
of the world, there are points in time when different professions become suddenly
crucial, and their practitioners suddenly powerful. The world abruptly needs and
rewards their particular set of skills.”6 Computer programmers suddenly became
this influential group.

The “big bang” of software construction that took place in the 1970s created
waves of demand for qualified programmers that continue to expand up to the
present. Even in the Internet age—when learning to manage websites, write blogs,
anduse socialmedia tools has takenongreat importance—learning to codehasnot
lost its appeal. As this book goes to press, the leaders of technology companies such
asAmazon,Google, Facebook,Apple, andMicrosoft regularly complain toCongress
that the U.S. does not have enough qualified software developers to meet its needs.
According to these advocates, a special exemption is needed in our national immi-
gration policies to allow more foreign high-tech workers into the U.S. to satisfy the
demand for software developers and associated fields, such as hardware engineer-
ing, artificial intelligence, data mining, computer security, user interface design,
audio engineering, cloud computing, product testing and verification, technical
writing, product support, project management, and related fields. Programmers
have become the lifeblood of our technical society.

1.3 NewWays of Thinking
Calls to learn coding techniques abound now from the leaders of our digital
economy. So, too, are warnings that if a group does not heed the call, they will miss

6. Clive Thompson, Coders: The Making of a New Tribe and the Remaking of the World (New York:
Penguin Press, 2019), 11.



1.3 NewWays of Thinking 9

out on all or part of what the global digital economy has to offer. But where did
this urgency to learn programming come from? What has motivated schools and
non-profit organizations to devote so many resources to preparing instructions for
a computer? When did programming literacy emerge as a national priority? And
what were the early experiences of programmers as they tinkeredwithmainframes,
minicomputers, and the first microcomputers? How is this story connected to the
development of successful platforms such as CP/M, MS-DOS, Microsoft Windows,
the AppleMacintosh, and Unix-based systems?

Whether past or present, the invitation to become a softwaremaker is an invita-
tion to join a distinctive community within our global society and economy. This
computing subculture was founded by a small group of research scientists and
academics, but it has expanded into a diverse assortment of hobbyists, students,
gamers, artists, musicians, hackers, engineers, career professionals, and part-time
workers. Although each of these groups is distinct in socio-economic terms, there
is discernable common ground in their understanding of computers and comput-
ing technology. Computer programmers share a basic orientation to the world that
is shared, despite the differences that they experience in relation to hardware and
software systems, learning tools, and historical context.

As a thought experiment, imagine that each subgroup within the programming
collective can be conceived of as a concentric circle. In such a model of our pro-
gramming culture, the entire assortment of circles would be drawn in close prox-
imity to one another, andmost of the circles would have points of intersection and
overlap. A shared exposure to computational thinking is the overlap, even if the
programming languages that people learn (and the tools they write programs with)
change over time. Some computer programmers may take up professional work,
and otherswill remain as hobbyists or late-night hackers. Still othersmay learn pro-
grammingskills aspart of a journey that leads toother typesof fruitfulwork.Despite
the differences, and there will be many, the entire set of circles is a model of our
nation’s programming culture.7

7. Georg Simmel first developed the idea of “cross-cutting social circles” to discuss how differ-
ent groups meet at points of common interest, dispute, or compromise. See Georg Simmel, Con-
flict and The Web of Group-Affiliations, trans. Kurt H. Wolff and Reinhard Bendix, respectively
(Glencoe, IL, 1955, original Berlin, 1908). For additional studies in the history of technology that
have influenced my approach, see Joseph J. Corn, ed., Imagining Tomorrow: History, Technology,
and the American Future (Cambridge, MA: The MIT Press, 1986); David E. Nye, Narratives and
Spaces: Technology and the Construction of American Culture (Exeter, UK: University of Exeter Press,
1997); Nina Lerman, ArwenMohun, and RuthOldenziel, “The shoulders we stand on and the view
from here: Historiography and directions for research,” Technology and Culture 38 (1997): 9–30;
David E. Nye, Consuming Power: A Social History of American Energies (Cambridge, MA: The MIT
Press, 1998); Joseph J. Corn, The Winged Gospel: America’s Romance with Aviation (Baltimore, MD:
Johns Hopkins University Press, 2002); Greg Downey, “Commentary: The Place of Labor in the



10 Chapter 1 How Important is Programming?

The call to join ranks with computer programmers is not just an invitation to
new ways of thinking (learning computational logic) and new consumer behav-
iors (buying software and a programming primer), it is also a call to new social
relationships, to new ways of seeing and knowing, and to participating in new
personal and professional networks. The programming circles that collectively
shape America’s technical identity are as much expressions of a distinct subcul-
ture as are the ideas and values of Impressionist artists and their admirers in
Fin-di-siècle Paris or jazz musicians and their fans during the Swing Era in New
York City.

As a social historian with interests in the history of technology, business, and
education, I amcuriousabout theexperiencesof today’sprogrammersandsoftware
creators, and where they received their training, inspiration, and cultural world-
views. (See Figure 1.2.) Although the Internet era has contributed much to the
behaviors and identity of contemporary software developers, the core skills and
thought patterns of modern programmers were influenced by even earlier com-
mitments and achievements. These included the proliferation of high-level lan-
guages in the 1950s, the introduction of software engineering techniques in the
1960s, the idealism of educators, entrepreneurs, and authors in the 1970s and
1980s, and the diffusion of commercial programming techniques in the 1990s
and 2000s.

My argument is that the learn-to-program movement gained momentum
through each of these important transitions, as programmers, authors,
and entrepreneurs created pathways through which Americans might learn
programming skills and the fine-points of creating software for specific
platforms. Computer book authors, magazine publishers, and influential
programmer/educators played important, if overlooked, roles in the diffusion
of these new skills. By establishing an ideological connection to the com-
puter literacy movement, programmer/educators established a framework that
made computer programming feel important, rewarding, and attached to the
rituals of citizenship and corporate belonging. The learn-to-program move-
ment took shape through the efforts of many unsung heroes, both women and
men, and one of my goals with this book is to reacquaint historians and pro-
grammers with a cast of interesting actors and protagonists who have been
left out of recent narratives. Part of this work involves using visual sources to

History of Information-Technology Revolutions,” in Uncovering Labour in Information Revolutions,
1750–2000 (International Review of Social History), vol. 38 Supplement 11 (2003), 225–261; Lisa
Gitelman, Always Already New: Media, History, and the Data of Culture (Cambridge, MA: The MIT
Press, 2008); and Christopher Tozzi, For Fun and Profit: A History of the Free and Open Source
Software Revolution (Cambridge, MA: TheMIT Press, 2017).



1.3 NewWays of Thinking 11

Figure 1.2 A middle school student learns computational thinking in a programming camp
sponsored by the Tacoma/South Puget Sound MESA organization. (Photo: Joshua
Wiersma/Pacific Lutheran University)

unpack the social context of historic computing environments. (See Figure 1.3.)
I will profile social reformers, writers, teachers, tinkerers, entrepreneurs, and
hackers, as well as computer scientists, students, engineers, and the leaders of
America’s computing societies, including the Association for ComputerMachinery
(ACM). Predictably, most of the programmers that we meet will be members of
more than one social or professional group.

To get a sense for the magnitude of the sea change that took place, consider
somebasic demographics. In 1957, therewere approximately 15,000 computer pro-
grammers employed in the U.S., a figure that accounts for approximately 80% of
the world’s programmers active that year. The work of the first computing pioneers
involved building and maintaining military systems, designing algorithms for sci-
entific research, tracking census data, and implementing data-processing schemes
for government bureaus and corporations.

In 2000, there were approximately 9 million professional programmers world-
wide, with millions more who had been exposed to coding concepts as part of



12 Chapter 1 How Important is Programming?

Figure 1.3 Threemen and two women gather for ameeting near an IBM 370Model 138 Computer
System in Berkeley, California. IBM’s 1976 publicity photo emphasizes the value of
teamwork and the extensive documentation that was prepared for programmers and
administrators. (Courtesy of the Computer History Museum)

their school curriculum or other experiences.8 In addition to steady growth in
military and scientific computing, the expanding digital economy has brought
new opportunities for computer programmers in the fields of consumer software,
video game programming, artificial intelligence, information publishing, digital
communications, education, art, music, entertainment, medicine, and other areas
that benefit from the use of computers.

The rising tide of opportunity for software developers has continued up to the
present. In 2014, there were approximately 18.5 million software developers in
the world, of which 11 million can be considered professional programmers and

8. Steve Lohr,GoTo: The Story of theMathMajors, Bridge Players, Engineers, ChessWizards,Maverick
Scientists, and Iconoclasts—The ProgrammersWhoCreated the Software Revolution (New York: Basic
Books, 2001), 6–7.



1.4 Equity and Access 13

7.5million canbe considered as hobbyists.9Manyprogrammers create ormaintain
software as part of their regular employment, while others write code for non-profit
organizations that they support, and still others program at school, for recreation,
or as an aspect of their personal or professional development.

1.4 Equity and Access
Despite the bright economic outlook for software developers, there are still
numerous challenges in bringing programming proficiencies to the general
population. In reality, only a small subset of the people who use computers actually
go on to learn something about computational thinking or software development.
Our modern economy requires many important job skills and personal invest-
ments. Considering the costs and the effort required, does it really matter who
learns to program and who does not?

In the book Stuck in the Shallow End: Education, Race, and Computing, Jane
Margolis et al. argue the “who” that learns to use technology matters a great deal,
and that America has suffered throughout its history from inequities in access
to computing.10 Their research indicates that African-American and Latino chil-
dren are much less likely to receive technology training in American schools than
white or Asian children. When scholars analyze gender disparities and later pro-
fessional outcomes, they find that only two out of ten information technology (IT)
professionals are women in the current U.S. workforce.

Margolis and her contributors offer convincing evidence that the character-
istics of programming culture matter tremendously to those who enter the sub-
culture and to those who thrive in it (or recede from view). Understanding the
long history of the learn-to-programmovement and its cultural commitments and
values reveals much about how people have interacted with computers in the
past, and how we might expand computing opportunities in the future. Yasmin
Kafai and Quinn Burke describe the challenge before us as working to better sup-
port “computational participation” in our schools and professional environments.
In their important book, Connected Code, they recommend that thought leaders

9. International Data Corporation, 2014Worldwide Software Developer and ICT-SkilledWorker Esti-
mates (Framingham,MA: International Data Corporation, 2014).

10. Jane Margolis, Rachel Estrella, Joanna Goode, Jennifer Jellison Holme, and Kimberly Nao,
Stuck in the Shallow End: Education, Race, and Computing, Updated Edition (Cambridge, MA: The
MIT Press, 2017). See also J. Margolis, J. Goode, and K. Binning, “Exploring computer science:
active learning for broadening participation in computing,” Computing Research News 27, no. 9
(October 2015).



14 Chapter 1 How Important is Programming?

Figure 1.4 ACMmember Professor Renzhi Cao teaches computer science to local middle school
students in Tacoma, WA. Early engagement and outreach related to computational
thinking has become a standard practice in many high-tech communities. (Photo:
John Froschauer / Pacific Lutheran University)

shape technology-centered cultures carefully, ensuring that all participants feel
welcomed and included.11 (See Figure 1.4.)

One important outgrowth of this research has been the rise of not-for-profit
organizations that teach young people how to program, including Code.org, Black
Girls Code, Girls Who Code, Native Girls Code, and The Hidden Genius Project.
At the high school level, many organizations focus on introducing programming
concepts and preparing students to take the College Board’s AP Computer Science
Principles examination. I evaluate theworkofCode.org and theHourofCodemove-
ment in the Afterword for this book. As a preview, I note here that Code.org has
completedover 720million introductory programming sessions since theorganiza-
tionbegan in2013,with46%femaleand48%underrepresentedminorities currently

11. Yasmin Kafai and Quinn Burke, Connected Code: Why Children Need to Learn Programming
(Cambridge, MA: TheMIT Press, 2016).



1.5 Personal Connections 15

using the group’s courseware.12 These figures are clearly impressive, and they show
one way that creative thinking and industry partnerships can support an education
system that is struggling to find resources and leadership. However, the new initia-
tives were not created fromwhole cloth, but are simply the latest manifestations of
a long programming literacy movement that has a fascinating history and is now
being scaled to meet global needs. Just as in the past, there is an ongoing debate
about the efficacy of wide-ranging computer literacy programs and the best way to
deliver them.13

Importantly, this conversation about equity and access is connected to ethi-
cal considerations, and it will only move forward with input from many academic
and industry partners. Our world is increasingly dependent on computers and
technology, and it is imperative that we work together to understand the char-
acteristics of technical communities and how they shape our hearts and minds.
Computational thinking courses are among themost interesting places to attempt
this work.

1.5 Personal Connections
I have wanted to write this book for a long time because I am fascinated with
software development. PCs were an important starting place for me during my
teenage years, and I first learned to write computer code on early microcomputers
and PCs. Like many people of my age and social context, my first experiments
with home electronics took place in the family rec room during the late 1970s.
My extended family bought a Tandy TRS-80 and an Atari video computer system,
and the young people in our circles used them to play video games like Pong and
Missile Command. A bit later, I experimented with an early IBM Personal Com-
puter when it was released in August 1981, just weeks before I entered college
at Pacific Lutheran University (PLU) in Tacoma, Washington. I took an introduc-
tory computer programming course and declared as a Computer Science major at
PLU, deferring my interests in history and education for graduate school. I learned
BASIC, Pascal, C, and assembly language programming on the university’s Digi-
tal Equipment Corporation (DEC) VAX 11-780 and DEC PDP-11 minicomputers.
I also studiedmathematics, data structures, algorithms, operating systems, digital
logic, computer architecture, computer graphics, and networking theory. In 1985, I

12. See “Code.org 2018 Annual Report,” February 12, 2019, 3. https://code.org/files/annual-
report-2018.pdf. Accessed August 9, 2019.

13. For a summary of the current concerns and priorities in the computational literacy field, see
Emmanuel Schanzer, ShriramKrishnamurthi, andKathi Fisler, “Education: what does itmean for
a computing curriculum to succeed?” Communications of the ACM 62, no. 5 (2019): 30–32.

https://code.org/files/annual-report-2018.pdf
https://code.org/files/annual-report-2018.pdf


16 Chapter 1 How Important is Programming?

Figure 1.5 Michael Halvorson working in his office at Microsoft Corporation (1990). (Photo
courtesy of Michael Halvorson)

graduated from university and I was hired at Microsoft Corporation to work in one
of their twoBellevue (Washington) office buildings, just before the companymoved
to its better-known Redmond campus. I was employee #850 in the rapidly expand-
ing organization (see Figure 1.5), arriving when the best-selling products were MS-
DOS, Microsoft Word for MS-DOS, and a few popular programming languages and
development tools.

During my job interview at Microsoft, I was shown a testing (beta) version of
MicrosoftWindows 1.0. It wasnot very impressive at the time, but thenewgraphical
operating environment for IBM PCs and compatibles would eventually become an
exciting platform formany users, programmers, and commercial software publish-
ers.My first work was atMicrosoft Press, the book publishing division ofMicrosoft,
foundedbyBill Gates in 1983 toprovide technical support for computer enthusiasts
who were frustrated by the poor quality of software manuals. In the early days
of personal computing, product documentation was often little more than print-
outs assembled in a three-ring binder, and there was not much in the way of
computer-based help or training for PC users. From these humble beginnings, a



1.6 Manifestos of theMovement 17

major publishing industry took shape. It came to include bestselling magazines
like PCMagazine,Macworld, andCompute!, as well as the computer book publishers
HowardW. Sams, O’Reilly, OsborneMcGraw-Hill, Que, Microsoft Press, Sybex, and
IDG Books.

Our work at Microsoft Press was to help self-taught programmers and those
who used Microsoft’s business applications to get the most out of their software.
I edited books, worked with independent authors, attended industry trade shows,
and (beginning in 1986) started writing do-it-yourself (DIY) computer books about
using operating systems and programming languages. I was lucky that my univer-
sity training required a healthy dose of the liberal arts along with my computing
classes. Both fields of study prepared me to tackle substantial research and writ-
ing projects in the years to come, and they were valued in the book publishing
division.

The learn-to-program movement was something that I saw first-hand while
working with Microsoft’s customers and authors. In particular, there were fasci-
nating people to learn from at computer industry trade shows, especially COMDEX
and Macworld Expo. (See Figure 1.6.) In 1989, I co-authored the book Learn BASIC
Now with my colleague and friend, David Rygmyr, and the book was carefully
edited byMegan Sheppard and DaleMagee, Jr. (also employees ofMicrosoft Press).
Our programming courseware included a full-featured version of the Microsoft
QuickBASIC Interpreter for MS-DOS on three 5.25” disks, and Bill Gates wrote a
Foreword to the book recalling his personal connection to Altair BASIC and his
interest in using BASIC as a unifying language across computing platforms. (See
Chapter 5.)

Learn BASIC Now sold many copies and it was selected as a finalist for a
national book award in the computer book “HowTo” category. Our self-study guide
clearly intersected with the powerful demand for programming instruction, and
the low-cost QuickBASIC Interpreter made the product relatively inexpensive for
newcomers. Over the years, I wrote another 15 books about software development,
mostly for self-taught programmers and those who wanted to learn the newest
features of popular products likeMicrosoft Visual Basic orMicrosoft Visual Studio.
Through the books, I was actively connected to publishers, software development
teams, user groups, academics, journalists, literary agents, and a wide range of
computer users—many of whomwould write or email us directly for help.

1.6 Manifestos of the Movement
Despite my positive interactions with new programmers, I gradually learned that
Iwasonly a small part of the thirdor fourthwaveof technicalwriterswhohadspread
themessageabout computational literacyand learning tocode in the years since the



18 Chapter 1 How Important is Programming?

Figure 1.6 An exhibitor badge from the COMDEX/Fall ’90 trade show in Las Vegas, Nevada. (Photo
courtesy of Michael Halvorson)

introduction of the first computers. Preparation of Programs for an Electronic Digital
Computerwaspublished in1951byMauriceWilkes,DavidWheeler, andStanleyGill
to instruct readers on how to formulate machine code for the revolutionary EDSAC
computer at theUniversity of Cambridge.14 GraceMitchell, DanielMcCracken, and
Elliott Organick also wrote creative programming primers for FORTRAN in the late
1950s and early 1960s, introducing non-specialists to programming.

In the era of time-sharing systems and early PCs, a new wave of programming
advocates supported the movement. These were pioneers like Robert Albrecht
and LeRoy Finkel, who participated in the People’s Computer Company and the
Homebrew Computer Club in Menlo Park, California. From the beginning, these
visionaries understood that not only did people need to buy computers and start
programming, but they needed to learn how to program through books, materi-
als, and social interaction. These computing innovators wrote fascinating pro-
grams and produced several best-selling computer titles, but they have largely been
neglected in the history of computing. A new book by Joy Lisi Rankin, A People’s
History of Computing in the United States, is an important exception to this lacuna,
and Rankin demonstrates how Albrecht and his contemporaries inspired thou-
sands of programmers to appreciate the benefits of BASIC.15

14. Maurice Wilkes, David Wheeler, and Stanley Gill, Preparation of Programs for an Electronic
Digital Computer (Reading, MA: Addison-Wesley, 1951).

15. Joy Lisi Rankin, A People’s History of Computing in the United States (Cambridge, MA: Harvard
University Press, 2018), 68–69, 94–100.



1.7 A NewHistory of Personal Computing 19

Also important in the 1960s and 1970s were the pioneering efforts of the
educational theorists Arthur Luehrmann, Seymour Papert, Cynthia Solomon, and
Wally Feurzeig, all active in the computing hotbeds of Cambridge, Massachusetts
and Greater Boston. Luehrmann coined the term “computer literacy” and encour-
aged students to learn structured programming with BASIC and Pascal. Papert,
Solomon, and Feurzeig co-developed the Logo programming system at the Mas-
sachusetts Institute of Technology (MIT), and theywrote about its potential to teach
computational thinking to children. Also, from the era of time-sharing systems,
David Ahl, an early DEC employee, published tutorials that advocated for the use
of computer games to teach programming concepts. My favorite of Ahl’s titles is
101 BASIC Computer Games, published by DEC in 1973. This book is filled with
mimeographed program listings that Ahl received in the mail from BASIC users
across the U.S. It was one of the first bestselling computer programming titles,
selling tens of thousands of copies to novice computer users, hobbyists, academics,
and working professionals.

Many of the earliest manifestos of the learn-to-program movement were sold
out of VW vans and dusty boxes in computer clubs. However, this DIY world was
also on the fringes of the professional software development community, which
took its energy from debates within the nascent software engineering movement
and the emerging discipline of computer science. The standard-bearers in this field
created the computers, operating systems, andprogramming languages that would
fuel the academic and commercial worlds of software development in the years
to come. Readers learned about their important discoveries through conferences
and influential computer books such as Donald Knuth, The Art of Computer Pro-
gramming (1968 and later); Kathleen Jensen and Niklaus Wirth, The Pascal User
Manual and Report (1971); Brian Kernighan and Dennis Ritchie, The C Program-
ming Language (1978); and Rodnay Zaks, Programming the Z80 (1979). Although
these authors did not always publish programming primers, they helped experi-
enced programmers understand the cadence of computer languages, taught peo-
ple to devise data structures and algorithms, and explored the advanced features
of operating systems and computer architecture. The introduction of professional
and commercial programming practices is a crucial stage of the learn-to-program
movement.

1.7 A New History of Personal Computing
CodeNation explores the social, technical, and commercial changes that took place
in the U.S. as computer programming became a regular part of life for so many.
The trials and triumphs of PC programmers are featured on these pages, as well



20 Chapter 1 How Important is Programming?

as the negative consequences that came to people who were denied the opportu-
nity to code based on their location, gender, ethnicity, or economic circumstances.
My emphasis is not on high-tech leadership strategies or the tactics that gener-
ated corporate wealth, but on the stories of lesser-known programmers, authors,
academics, and entrepreneurs. Some were successful, and some have been mostly
forgotten. But this is itself a lesson in the history of innovation, business, and
technology.

To tell this tale, Code Nation presents a new history of personal computing in
the U.S. I present a detailed analysis of early computer platforms, a discussion of
important compilers and development tools, a “behind-the-scenes” look at appli-
cation and operating-system programming, the origins of corporate and “enter-
prise” computing strategies, the rise of user’s guides andcomputer books, andearly
attempts to market and sell PC software. Writing a fresh history of personal com-
puting involves significant challenges, in part because the most recent storytelling
emphasizes the roles that famous “pioneers” and “founders” have played in narra-
tives about Silicon Valley, the Greater Boston area, and the PacificNorthwest. There
has been no shortage of popular books about Apple Computer,Microsoft, Amazon,
Google, andFacebook—usually emphasizing the riseof thestereotypical “computer
nerds” to positions of wealth and influence in the companies that benefited from
personal computing and Internet-based technologies.16

It is often difficult to move beyond these perspectives because of a curious lack
of sources that document early personal computing and its broader impact on
American society. Most of the earliest PC hardware and software companies have
merged or gone out of business, leaving little in the way of historical materials to
study. IBM is a noteworthy exception to this trend, recently releasing some of its
materials to historians of computing.17 But Apple Computer’s corporate records
have been carefully edited by their legal teams and are only partially available.
Microsoft has also been reluctant to open its corporate archives to scholars and the
general public. Beyond the personal narratives of former employees and product
enthusiasts, how are historians to study the history of personal computing? What
sources can we use to understand how corporate identities were shaped, hardware

16. An example of this work is Walter Isaacson, The Innovators: How a Group of Hackers, Geniuses,
and Geeks Created the Digital Revolution (New York: Simon and Schuster, 2014). An intriguing new
approach isMargaretO’Mara’shistory of SiliconValley,whichconnects the technical andbusiness
development of the region to local and national politics. See Margaret O’Mara, The Code: Silicon
Valley and the Remaking of America (New York: Penguin Press, 2019).

17. See James W. Cortada, IBM: The Rise and Fall and Reinvention of a Global Icon (Cambridge,
MA: The MIT Press, 2019), especially chapter 14. Cortada was well positioned to write this history
because he is a former IBM employee as well as a professional historian.



1.7 A NewHistory of Personal Computing 21

and software products were created, and whether computing initiatives succeeded
or failed? Just as important, how did the users of PCs experience new products and
come to understand their features? Can we assess how regular people accepted,
accommodated, or rejected the plans and proposals of industry elites?

Code Nation proposes a publication-centered way of examining the early history
of microcomputing and personal computing, from experiments with time-sharing
systems, to the mail-order kits of early enthusiasts, to book and magazine pub-
lications for platforms like MS-DOS, the Apple Macintosh, Microsoft Windows,
and Unix/Xenix. I evaluate the history of personal computing using hundreds of
programming primers, textbooks, manuals, magazines, user’s guides, and trade
show catalogs from the early 1950s to the late 1990s. These neglected sources
have allowed me to explore the challenges presented by the first PC systems,
the content of computer literacy debates, the methodology of early programming
primers, the strategies of successful (and unsuccessful) entrepreneurs and corpo-
rations, and the way that computing has impacted the daily life of Americans. To
support this analysis, I include technical descriptions of hardware and software
systems, code snippets from historic programming languages, the biographies of
little-known programmers and entrepreneurs, and a product-based assessment of
early hardware and software systems. I also present over 80 historic photographs
selected from relevant archives, museums, corporations, and private collections.

I have learned that printed materials related to computers and software—once
a common feature of many offices, homes, and schools—have been discarded at
an alarming rate. When discussing the issue of “disappearing sources” with a
local college librarian, I learned that older computer books and magazines are
especially vulnerable to being categorized as ephemera, or transitory sources of
information about outdated methods or technologies. (See Figure 1.7.) With new
computer books and periodicals arriving on a monthly basis, and shrinking bud-
gets, how important is it tomaintain anhistoric collectionof FORTRAN,BASIC, and
C primers? Especially in locations where shelf space is at a premium? My source’s
questions are legitimate, of course. But the comment points out how vulnerable
technical sources are to abandonment. “Often, they are simply recycled,” my infor-
mant conceded.

But, if we cannot study issues like computer literacy in thepast, howcanwehope
to evaluate it in the present?

For the purpose of this study, I was able to findmany older computer books and
periodicals in private collections, as well as the technical libraries of larger public
universities. For example, I have spent many weeks in the engineering library at
the University of Washington in Seattle, which has a good collection. I also found
many books, newsletters, and software packages in the Computer HistoryMuseum



22 Chapter 1 How Important is Programming?

Figure 1.7 The title page of Thom Hogan’s Osborne CP/M User Guide. Published by
Osborne/McGraw-Hill in 1981, this book was one of the most important operating
system primers of the microcomputer era. Like many older computer publications,
however, ithasbeenwidelydiscardedby libraries. (PhotocourtesyofMichaelHalvorson)

in Fremont,California. But like the chapbooks and “street literature” of earlier eras,
historic computer books andmaterials can easily be lost if historians are not sensi-
tive to the many treasures that they contain. In particular, they reveal the teaching
strategies used to introduce new technical systems, and the opinions and practices
of regular people who are learning new technologies. I hope that this publication-
centered approach will be of interest to future historians of computing. There are
still many fascinating sources that slumber in our nation’s technical collections.

I begin Code Nation with a comparative analysis that examines computing in
the 1960s and 1970s, emphasizing the era’s sense of crisis about how software
was being created and its multilayered hopes for renewal. My survey presents four
overlapping computing mythologies, each representing a different aspect of the
period’s professional, cultural, and technical traditions. Thesenarratives introduce
early advocates for software engineering practices, countercultural idealists who



1.7 A NewHistory of Personal Computing 23

promoted widespread access to tools, creative scholars from the emerging disci-
pline of computer science, and the designers of the first personal computers. In the
1980s and 1990s, American programmers drew onmany of thesemotifs, creating a
worldview that bundled hopes, anxieties, and dreams about the new platforms.





Author’s Biography

Michael J. Halvorson
Michael J. Halvorson, Ph.D., is Benson Chair of
Business and Economic History at Pacific Lutheran
University,wherehe teaches courseson thehistoryof
business, computing, and technology.Hehaswritten
widely on European history, application software,
and programming personal computers, including
the popular seriesMicrosoft Visual Basic Step by Step,
Pearson (2013). To learnmore about theCodeNation
project, visit www.thiscodenation.com.

http://www.thiscodenation.com/




Index

A-0 compiler, 31, 76

Academic journals, 98, 230, 248

ACM. See Association for Computing
Machinery (ACM)

Advanced hobbyists, 236, 245–247

AdvancedMac systems, 170, 200–201

AdvancedMS-DOS, 258, 274–281.

See alsoMS-DOS—Encyclopedia,
280

Advanced OS/2 Programming, 280, 286

Adventure games, 137–141

Ahl, David H., 19, 108, 127–135, 143,
154, 231, 329–330

AI. See Artificial intelligence (AI)

Albrecht, Robert, 18, 55, 99–111, 193,
230, 328, 358

Algorithmic Language (ALGOL), 28,
38, 51, 77, 87

Algorithms, 11, 15, 19, 34, 69, 70

devised seminal, 52

encryption, 223

Allen-Babcock Computing, 36, 37

Allen, Paul, 66–69, 110, 281

Altair 8800microcomputer, 66, 67,
110, 231, 275

kit, 58–59, 111

Altair BASIC, 17, 66, 110–111, 147

America Online (AOL), 188

American Dream, 6, 360

American National Standards Insti-
tute (ANSI), 292

ANSI BASIC, 113, 143

ANSI C standard, 295, 298, 303

ANSI.SYS, 182, 308

American Project, 6, 360

AmigaWorldmagazine, 233

ANSI. See American National Stan-
dards Institute (ANSI)

Anticmagazine, 233

AOL. See America Online (AOL)

APIs. See Application programming
interfaces (APIs)

Apple Computer, 120, 170

Apple I computer, 59, 192

Apple II computer, 59

Education Agenda, 121–123

Apple DOS, 181, 276

“Apple Expo” initiative, 122

Apple ImageWriter II, 200

Apple Lisa, 309, 310

AppleMacintosh (Mac OS), 9, 21,
181, 188–192, 201, 227, 236,
303, 309, 346, 350. See also
MS-DOS;Windows

components, 303

operating system, 191

platform, 170, 176

system, 189



378 Index

Waite Group’s Macintosh Primers,
192–200

Way, 325–328

“Apple Seed” computer literacy pro-
gram, 122

Application programming interfaces
(APIs), 156

Arrays, 78, 82, 140, 149, 196, 273, 297

Artificial intelligence (AI), 5, 87, 96,
140, 318

Assembly language, 15, 51, 64–65, 67,
73–74, 98, 263, 274, 278, 317

primer, 159, 193

routines, 68, 279

Association for ComputingMachinery
(ACM), 11, 28, 50–51, 65, 71,
143, 231, 266

Atanasoff–Berry Computer, 71

Atari video computer system, 15

AUTOEXEC.BAT files, 172, 179

AWK reporting tool, 180, 246

B. F. Skinner approach, 108–110

Backus, John, 78–79

Balloon help, 201

Basic combined programming lan-
guage (BCPL), 290

BASIC programmers, 127

adventure games, 137–141

David Ahl, 128–133

IBMBASICA, 135–137

innovative programming primers,
159–165

Microsoft Game Shop, 153–156

Microsoft Press and Learn BASIC
Now, 145–153

proliferation of BASICs, 134–135

structured programming, 141–145

Visual Basic forWindows,
156–159

BASIC, 52, 67, 77, 100–101, 103–108,
207, 306

ANSI BASIC, 113, 143
Altair BASIC, 17, 66, 68, 110–111,

147
Basic Professional Development

System, 144, 157
Classic BASIC, 134, 141–144
GW-BASIC, 136, 148
HP BASIC, 134–135
QBasic, 155–156
QuickBASIC, 144–148
QuickBASIC for the AppleMacin-

tosh, 146–148, 200
Tiny BASIC, 110–111
Turbo Basic, 144
True BASIC, 144
Structured BASIC, 134, 144–147,

164
Visual Basic for Applications,

157–158
Visual Basic for MS-DOS, 157
Visual Basic forWindows,

156–164, 348, 352–354, 363,
365

Batch files, 165
MS-DOS, 169, 182, 243
programming, 178–179, 289
VanWolverton and, 176–183

Battle of Numbers, 131
BBN. See Bolt, Beranek and Newman

(BBN)
BBS. See Bulletin board system (BBS)
BCC. See Berkeley Computer Com-

pany (BCC)
BCPL. See Basic combined program-

ming language (BCPL)



Index 379

Berkeley Computer Company (BCC),
213

Berkeley Software Distribution (BSD),
206, 216, 292

“Big bang” of software construction, 8
Black Girls Code, 14
Bolt, Beranek and Newman (BBN), 90
Borland C, 307
Boxer, 371
Borland International, 243, 270–274,

305, 314, 338, 341
Brand, Stewart, 41–47, 55–56, 90, 100,

106–107, 214, 359, 362
Brooks, Fred, 34–35, 344
BSD. See Berkeley Software Distribu-

tion (BSD)
Bulletin board system (BBS), 214
Bush, George H.W., 321, 338–339
Bytemagazine, 59, 159, 201, 231, 232,

247, 248, 279

C
academic and professional

resources, 296–299
ANSI C standard, 295, 298, 303
Charles Petzold’s Programming

Windows, 306–316
for people, 299
learning C on personal comput-

ers, 293–296
Microsoft C Compiler version 5.1

software disks, 296
Microsoft C Professional Devel-

opment System, 346
Microsoft C version 5.1, 295–296
on complexity, 316–320
PC-based compilers compared,

293–296
primers, 298–299

programming language, 51, 77,
290–293, 307, 352

Think C, 303

C compilers (Microsoft), 156, 158, 258,
278, 279, 295

C for Dummies, 303–306

C Primer Plus, 299–301

C++, 165, 200, 287, 290, 294, 298, 309,
312–314, 352

CAD program. See Computer aided
design program (CAD pro-
gram)

Cannon (game object), 140

Capital Personal Computer User
Group (CPCUG), 266

CASE. See Computer-aided software
engineering (CASE)

Central processing unit (CPU), 7

Certification programs, 5, 354

CIS. See CompuServe Information Ser-
vice (CIS)

Classic BASICs, 134

COBOL, 8, 28, 51, 64, 76–78, 269–270,
320

Code Complete, 343, 345

Code.org, 14, 368–370

Codec-based digital PBX systems, 193

Coding boot camps, 5, 367

Cognitive skills, 118

COMDEX, 17, 185, 322, 328, 332–339,
351

COMDEX/Fall ’90 Program and
Exhibits Guide, 334–336, 338

“Command-line” interface, 181

COMMAND.COM, 182

Commercialization, 350–355

commercial computing trade
showmovement, 322



380 Index

commercial programming cul-
ture, 321

commercial-grade software, 335
Commodore PET 2001, 59
Communications of the ACM (maga-

zine), 249
Community Memory project, 57–58,

215–216
Compiler, 76

A-0 compiler, 76
C compilers (Microsoft), 156, 158,

258, 278–279, 295
high-level compilers, 76
QuickBASIC Compiler, 155
“Small C” compilers, 294

Complexity of software, 32–35
CompuServe, 188, 361
CompuServe Information Service

(CIS), 240, 361
Computational participation, 13
COMPUTe project, 113
Compute! (magazine), 154, 232
Computer aided design program (CAD

program), 242
Computer games/gaming, 128, 130,

132, 162, 318
Computer language, 7, 70, 352 .

See also Programming languages
Computer literacy, 19, 64, 119, 190

Apple Computer’s Education
Agenda, 121–123

applications over languages,
123–125

Arthur Luehrmann and computer
literacy debate, 112–120

B. F. Skinner approach, 108–110
BASIC, 103–108
blow tomovement, 120–121
in language, 117

Robert Albrecht and populariza-
tion ofmovement, 100–103

Tiny BASIC, 110–112
Computermagazines, 224, 250

advanced hobbyists, 245–248
collections, 229–230
letters from programming com-

munity, 235–236
magazines and popular culture of

computing, 230–235
new approaches to historical

research, 252–253
new PC users, 236–241
power users, 241–245
professional programmers,

248–251
technical information, 227
voices of technology users, 228

Computer Professionals for Social
Responsibility (CPSR), 216

Computer science, 5, 49–53
Computer-aided software engineering

(CASE), 345
Computers and Electronics (magazine),

232
Computing culture, 230–234
Computingmythologies, 25

birth of computer science, 49–53
complexity of software, 32–34
computers for people, 54–57
counterculturemovement, 39–44
engine of capitalism, 360
intertwingularity, 45–47
NATO Conference on Software

Engineering, 27–31
personal computing, 58–60
systems for customers, 35–38

Computing terminology, 171–172
CONFIG.SYS files, 172, 179



Index 381

Constructionist movement in science
education, 87

Conversational Programming System
(CPS), 37

Convivial technology, 90
Coordinate system, 196
Counterculturemovement, 39–44
CP/M, 9, 22, 170, 193, 263, 275–276,

278, 295
CPCUG. See Capital Personal Com-

puter User Group (CPCUG)
CPS. See Conversational Program-

ming System (CPS)
CPSR. See Computer Professionals for

Social Responsibility (CPSR)
CPU. See Central processing unit

(CPU)
Crayne, Dian, 139–141, 162, 372
Creative Computing (magazine), 231,

328
cover of, 329

Creative recreation, 154
Cross-cutting social circles, 9
Cryptography, 222–224
Cultural attribute, 97
Cutler, Dave, 324
CyberpunkHandbook, 217–221
Cyberpunks, 203, 205

culture, 217
from civil rights activist to,

211–216
Mondo 2000 and Cyberpunk

Handbook, 217–222
Cyberspace, 217
Cypherpunks, 205, 222–224

D&D player. SeeDungeons and Drag-
ons player (D&D player)

Davidoff, Monte, 66–68, 110

dBASE, 143

DDE. SeeDynamic data exchange
(DDE)

Debugging, 80, 89

DEC PDP-11minicomputers, 15, 291,
293

DEC. SeeDigital Equipment Corpora-
tion (DEC)

Decentralized bull horn (FR-3), 55

Decision structures, 196

DECUS. SeeDigital Equipment Com-
puter Users’ Society (DECUS)

Delphi, 273

Denning, Peter J., 54

Dial-up networks, 188

“Diffusion and domestication” phases
of technology adoption, 172

“Diffusion” process, 286

Digital electronic computers, 3

Digital Equipment Computer Users’
Society (DECUS), 130

Digital Equipment Corporation
(DEC), 15, 28, 122, 129, 291,
324

Dijkstra, Edsger, 51–52, 143

diSessa, Andrea, 94, 357, 370–371

“Division of labor” principle, 31

Do-it-yourself (DIY), 17

DOS for Dummies phenomenon,
183–187

DOS guru, 181, 183

“Dot-com” bubble, 339–340

“Dot-com crash” (2000), 323

Duncan, Ray, 257–258, 274–285, 372

AdvancedMS-DOS, 274–281

Dungeons and Dragons player (D&D
player), 318

Dymax, 99, 102–103, 108



382 Index

Dynamic data exchange (DDE),
161–162

Echo command, 182
EDSAC. See Electronic delay stor-

age automatic calculator
(EDSAC)

Electronic delay storage automatic
calculator (EDSAC), 75

stored-program computer, 50
End-of-filemarker (EOFmarker), 293
Engineeringmovement, 19, 31, 342
ENIAC computer, 72
Enterprise computing, 20, 39, 164,

259, 352
Enterprise Development Systems, 320,

346–350
Enumeration, 297
EOFmarker. See End-of-filemarker

(EOFmarker)
Ephemera, 21
Equity and access, 13–15, 370
ESP. See Extra-sensory perception

(ESP)
Estridge, Don, 127, 135–136
Evangelism, 322

COMDEX and trade showmove-
ment, 332–339

commercial development projects,
323–324

commercialization, 350–355
integrated development environ-

ments, 321–322
learn-to-programmovement, 322,

325
MacintoshWay, 325–328
Professional and Enterprise

Development Systems,
346–350

software engineering for people,
342–345

trouble with self-taught program-
mers, 339–342

West Coast Computer Faire,
328–332

Event-driven programming, 157
Extra-sensory perception (ESP), 193

“Fat Mac”machine, 199
Felsenstein, Lee, 54–59, 90, 109, 121,

213–214, 219, 372
Feurzeig, Wally, 19, 64, 88–92
Findfile.bat, 182
Finkel, LeRoy, 18, 99, 102–103, 105,

108–109, 330
FLOW-MATIC, 31, 76
For command, 182
Foreign language, 7
Formula translating system. See For-

mula translation (FORTRAN)
Formula translation (FORTRAN), 6–8,

18, 21, 28, 49, 51, 63–64,
70, 77–82, 85–86, 93, 98,
100–102, 130, 134, 138, 172,
178, 213, 320, 340

Forth, 191, 276, 330
FORTRAN. See Formula translation

(FORTRAN)
Foundationmyths, 26
Foundingmemoirs, 77
Free SpeechMovement, 55, 103

Gates, Bill, 16–17, 66–69, 110, 147–148,
152, 189, 192, 267, 281,
337–338, 347–348, 360–363

getchar() function, 293
GirlsWho Code, 14
“Global ready” development strategy,

347



Index 383

Goffman, Ken, 213, 216–220
“Golden age” of corporate computing,

3
Gookin, Dan, 150, 169, 181–186,

303–306, 337, 359
GoTo statements, 143, 182
Graphical operating systems, 287, 289
Graphical user interface (GUI), 27,

157, 176, 258, 302, 317, 325
Graphics, 196
GUI. SeeGraphical user interface

(GUI)

Hackers, 171, 203, 205–206. See also
Cryptography

Bill Landreth and 1980s Hacker
Culture, 206–211

Hacking, 206
Halvorson, Kim, 335
Hejlsberg, Anders, 270–274
Hewlett-Packard (HP), 134, 174

HP BASIC, 135
Hewlett-Packard Journal, 231
Hidden Genius Project, The, 14
High Frontiersmagazine, 216
High-level compilers, 76
High-level languages, 65, 74–78
Holmes, Dean, 337
HomeMac users, 200
Hopper, GraceMurray, 30–31, 72–73,

75–76, 359–360, 368
Hour of Code, 5, 368–370
HP. SeeHewlett-Packard (HP)
Human–computer interaction, 5
HyperCard, 201, 340
Hypertext, 45
Hypothetical machine, 84

IBM, 141, 170

BASICA, 135–137
Personal Computer, 209
System/360, 31

IBM PCs, 259
AT, 268, 309
PS/2Model 90, 174
with Peter Norton, 262–270
XT, 261, 266
XTModel 5160, 265
XTmotherboard, 265

IDC. See International Data Corpora-
tion (IDC)

Ideological beliefs, 25
IDEs. See Integrated development

environments (IDEs)
IDG. See International Data Group

(IDG)
If statement, 182, 293
IF…THEN statement, 197
Individualized computing, 45
Industry journals, 230
Infants school, 90
Information technology, 5, 13, 125,

127, 211, 238, 320, 324
Initial public offering (IPO), 270
Innovative programming primers,

159–165
Integrated circuit technology, 37, 108
Integrated development environ-

ments (IDEs), 31, 65, 134,
137, 271, 295, 321

Integrated development suites, 347
Intel 8080microprocessor, 67
Internal Translator (IT), 38
International Data Corporation (IDC),

173
International Data Group (IDG), 181
International Standards Organization

(ISO), 297



384 Index

Internet information hubs, 229
Internet-based data sharing, 188
Intertwingularity, 45–48
Intravenous drips (IV drips), 276
IPO. See Initial public offering (IPO)
ISO. See International Standards Orga-

nization (ISO)
IT. See Internal Translator (IT)
IV drips. See Intravenous drips (IV

drips)

Java, 65, 200, 298–299, 340, 348,
364–365

JavaScript, 364–365
Jet Propulsion Laboratory (JPL), 262
Jobs, Steve, 51, 55, 59–60, 122, 189–190,

192, 262, 327fn, 329

K-12 curriculum, 119
Kahn, Philippe, 270–271, 338
Kawasaki, Guy, 322, 325–327
Kelley, Al, 297–298
Kennedy, Alison Bailey, 205, 218–219
Kemeny, John, 57, 67–68, 101, 104,

112–113, 131, 143
Kernighan, BrianW., 19, 151, 289,

292–293, 294, 296–298, 301,
313–314, 352

Kildall, Gary, 275
Knuth, Donald, 19, 74, 275, 301, 344
Kurtz, Thomas, 57, 67–68, 101, 104,

112–113, 143
Kwinn, Kathryn, 135, 372

Lafore, Robert, 193, 196, 278
LaMothe, André , 318–319
Lampson, ButlerW., 123–124, 213
Landreth, Bill, 205–211

and 1980s Hacker Culture,
206–211

Language syntax, 70

LaserWriter IINT, 200

Learn BASIC Now, 145–153

“Learn by doing” approach, 161

Learn CNow (Hansen), 302

Learn-to-programmovement, 5–6, 10,
13, 17, 25, 64–65, 75, 98, 103,
125, 325, 333

Learning process, 93

Libes, Lennie, 323

Libes, Sol, 323

LINE (draw line) statement, 196–197

Lisp, 90, 130, 191, 330

Logo, 95–98

design by Cynthia Solomon,
92–93

design by Seymour Papert, 87–92

asModel for Code Nation, 93–95

programming system, 19, 97

teachingmaterials, 94

Loops, 196

Low-level languages, 65

Lu, Cary, 188–192

Luehrmann, Arthur, 19, 112–121, 130,
134, 190, 305

Lynda courseware, 5

MacAnimate, 198

Machine language, 31, 65, 73–74

Macinations, 197

Macworld (magazine), 232, 239–241,
250

Macworld Expo, 17, 185, 351

Magee Jr., Dail, 17, 147, 150–151

Management information system
(MIS), 341

Marginalization, 206

Masculinization, 29



Index 385

MASM. SeeMicrosoft Macro Assem-
bler (MASM)

Massachusetts Institute of Technol-
ogy (MIT), 19, 49

Master C software, 302
MaturingMac Platform, 200–203
McConnell, Steve, 342–345
McCracken, Daniel, 83–86, 213,

272–273
MCP. SeeMicrosoft Certified Profes-

sional (MCP)
MCSD. SeeMicrosoft Certified Solu-

tions Developer (MCSD)
MCSE. SeeMicrosoft Certified Sys-

tems Engineer (MCSE)
Message-driven architecture, 313
MFU. SeeMidpeninsula Free Univer-

sity (MFU)
Microsoft BASIC, 135–136
Microsoft BASIC 2.0, 195–196
Microsoft Certified Professional

(MCP), 354
Microsoft Certified Solutions Devel-

oper (MCSD), 354
Microsoft Certified Systems Engineer

(MCSE), 354
Microsoft Corporation, 16
Microsoft Developer Network Library

(MSDN), 348
Microsoft DreamSpark, 163
Microsoft Excel, 237
Microsoft Game Shop, 153–156
Microsoft Knowledgebase articles,

151
Microsoft Macro Assembler (MASM),

74, 278
MASM 5.1 Programmer’s Guide,

280
Microsoft Office, 324

Microsoft Press, 17, 128, 145–153
Microsoft QuickBASIC Interpreter,

146–147
Microsoft SQL Server 6.5, 349
Microsoft Transaction Server 1.0, 349
Microsoft Visual Basic, 17, 156

Microsoft Visual Basic 1.0, 157
Microsoft Visual Basic 3.0, 159

Microsoft Visual Modeler, 349
Microsoft Visual Studio, 17, 307, 354

Microsoft Visual Studio 6.0 Enter-
prise Edition, 350

Microsoft Visual Studio 97 Enter-
prise Edition, 347, 349

Microsoft Visual Studio 97 Profes-
sional Edition, 347–348

Microsoft Windows, 9, 21
NT Server, 317, 324, 349–351
version 1.0, 16, 309–311
version 2.0, 306
version 3.0, 175–176, 238–239,

242, 307, 337
version 3.1, 161, 176, 311–317,

324, 354
Windows 95, 161, 164, 350
WindowsMillennium Edition,

311
Microsoft Word, 16, 157, 180, 237,

282, 324, 335
Midpeninsula Free University (MFU),

102–103
Milhon, Judith [“St. Jude”], 211–217,

219–221, 222–224
Minsky, Marvin, 87
MIS. SeeManagement information

system (MIS)
MIT. SeeMassachusetts Institute of

Technology (MIT)
Mitchell, Grace E., 81–83



386 Index

MITS Altair 8800. See Altair 8800
microcomputer

Modula-2, 191

Mondo 2000magazine, 212, 217–222

“Mother of All Demos” exhibition, 44

MOUSE function, 197

MS-DOS, 9, 21, 155, 170, 172–187,
227, 234, 257–259, 263–268,
274–286, 301, 309, 311. See
also Windows

Borland’s Turbo Pascal, 270–274

commands, 180

commercial applications and
operating system, 257

Encyclopedia, 281–283

Inside the IBM PC with Peter
Norton, 262–270

MS-DOS 2.0, 265

MS-DOS 5.0, 174–175, 234

new platforms for commercial
software, 259–261

Ray Duncan’s AdvancedMS-DOS,
274–281

sample code, 283–285

technology diffusion, 285–287

MSDN. SeeMicrosoft Developer Net-
work Library (MSDN)

Multitasking, 38, 201

Nagel, Bart, 218–220

Native Girls Code, 14

Nelson, Ted, 3–4, 7, 45–51, 55–56, 106,
148

New Communalists, 41–42

Nintendo 64 (1996), 318

North Atlantic Treaty Organization
(NATO), 27–32

Norton Commander (Socha), 267

Norton, Peter, 51, 157–158, 262–270,
285–286, 372

IBM PCwith, 262–270
Not-for-profit organizations, 14
Novice computer programmers, 109

Object linking and embedding inte-
gration (OLE integration),
161

Object-based programming, 312–313
OEMs. SeeOriginal equipmentmanu-

facturers (OEMs)
“Off the shelf” approach, 135
OLE integration. SeeObject linking

and embedding integration
(OLE integration)

OpenVMS, 181, 309, 324
Operating systems, 324, 350
Original equipmentmanufacturers

(OEMs), 38, 136
OS/2, 280–281
OS-9, 295
OS/360, 34, 37, 344
Osterman, Larry, 285

Pacific Lutheran University (PLU), 15
Papert, Seymour, 19, 63, 87–98, 190
Parameters in DOS documentation,

180
Parsers, 139
Pascal, 7, 15, 19, 51, 77–78, 88, 100,

135, 147, 152, 165, 172, 182,
200, 236, 266, 269

Apple Pascal, 120–121
Turbo Pascal, 270–274
UCSD Pascal, 190, 271

Pause command, 182
PCMagazine, 235
PC Revolution, 27, 54, 59, 350



Index 387

PC/Computing magazine, 235, 238
PC-DOS, 136, 170, 278
PCC. See People’s Computer Company

(PCC)
PCCNewsletter, 111–112
PCs. See Personal computers
PDC. See Professional Developers

Conference (PDC)
PDP-10, 68
PDP-11, 15, 245, 291, 293
People’s Computer Company (PCC),

99–100, 230, 328
Performance objectives, 118
Perlis, Alan, 36, 38, 50, 87, 360
Personal computers (PCs), 3, 27, 59,

63, 110, 127, 194–195, 205,
228, 258, 289, 322

clones, 172
economic impact, 187–188
learning C on, 293–296
platforms, 169–170
tinkering with, 174–176

Personal computing, 19–23, 45, 58–61
Personal Computing (magazine), 232
Personal connections, 15–17
Personality-driven primer, 128
Petzold, Charles, 150, 280–281, 289,

306–319, 337
ProgrammingWindows, 306–316

PGW. See Publisher’s GroupWest
(PGW)

Phreakers, 205
Piagetian learning styles, 92
Pixel set command (PSET command),

196–197
Pixels, 196
PLU. See Pacific Lutheran University

(PLU)
Pohl, Ira, 297–299

Pong andMissile Command, 15
Popular Computing (magazine), 232
Popular Electronics, 231
Popularization ofmovement, Robert

Albrecht and, 100–103
Pournelle, Jerry, 141, 147–148, 247
Power users, 171, 180, 241–245
“Pre-programming” tasks, 89
Primary schools, 90
Problem solving and coding, 118–119
Professional

and commercial programming
practices, 19

organizations, 50
programmers, 248–251

Professional Developers Conference
(PDC), 347

Professional Development Systems,
346–350

Program instructions, 73
Programmer/educators, 10
Programming, 3, 69. See also C; C++

American school children exper-
iment with computer pro-
gramming, 4

culture, 5–6
equity and access, 13–15
learning language, 7–8
manifestos of movement, 17–19
middle school student learns

computational thinking, 11
new history of personal comput-

ing, 19–23
new ways of thinking, 8–13
personal connections, 15–17
skills, 127, 179

Programming primers, 53, 64, 93, 94,
98, 103, 273, 296, 352

C, 298, 299



388 Index

for FORTRAN, 18
innovative, 159, 165
Wrox, 353

ProgrammingWindows, 306–316
Prosise, Jeff, 174, 308, 317
PSET command. See Pixel set com-

mand (PSET command)
Pseudocode, 198
Publisher’s GroupWest (PGW), 301

QBasic Interpreter, 174
QBlocks, 154
QSpace program, 154
Quest, 139
QuickBASIC Compiler, 155
QuickBASIC Interpreter, 153
QuickBASIC version 4.5, 148

RAD. See Rapid application develop-
ment (RAD)

Random accessmemory (RAM), 172
Rapid application development

(RAD), 127
Read-only memory (ROM), 260
Real-world computer systems, 34
Reality Hackersmagazine, 216
Rem command, 182
Richter, Jeffrey, 308, 317
Ritchie, Dennis, 19, 151, 289–298, 301,

304, 313–314, 352
Rocket, 131
ROM. See Read-only memory (ROM)
Roszak, Theodore, 39–40, 96
Rygmyr, David, 17, 146–151, 156, 200,

283

Sammet, Jean, 70, 85
Santa Cruz Operation (SCO), 247
School’s time-sharing system, 101
Science Committee of NATO, 29

Science, technology, engineering and
mathematics (STEM), 117

Scientific Data Systems (SDS), 37–38
Scientific literacy, 119
SCO. See Santa Cruz Operation (SCO)
Scripting protocol, 299
SDKs. See Software development kits

(SDKs)
SDS. See Scientific Data Systems (SDS)
“Second-generation” BASIC, 134
Self-referential structures, 297
Self-test questions, 109
Seybold Report, The, 234
SHAFT. See Society to Help Abolish

FORTRAN Teaching (SHAFT)
Sheppard, Megan, 17, 147, 149–151
SIGs. See Special interest groupmeet-

ings (SIGs)
“Small C” compilers, 294
Socha, John, 267–268
Society to Help Abolish FORTRAN

Teaching (SHAFT), 101
Softalkmagazine, 122
Software

crisis, 28
developers, 12–13
development process, 345
evangelism, 326
release, 33

Software development kits (SDKs),
250, 305, 346

Software engineering, 5, 28, 30–31
for people, 342–345

Sol-20, 59
Solomon, Cynthia, 92–93
Sony PlayStation (1994), 318
Spaghetti code, 143–144
Special interest groupmeetings

(SIGs), 227



Index 389

Statement syntax, 81
Steam-powered technologies, 5
STEM. See Science, technology, engi-

neering andmathematics
(STEM)

Stonesifer, Patty, 152–153
Strategic Defense Initiative, 216
Street BASIC, 143
Strings, 196
Structured BASIC, 134
Structured programming, 31, 141–145
Subprograms, 199
Subroutines, 196
Super video graphics array (SVGA), 174
SuperchargingMS-DOS, 181–183
SVGA. See Super video graphics array

(SVGA)
System

complexity, 33
for customers, 35–39
system-level control, 341

“Talkingmathematics”, 90
Tandy TRS-80microcomputer, 15, 59,

207, 259
TRS-80Model I, 206–207

Teamwork, 69
Technical community, 164
Technocracy, 40
Technological enthusiasm, 6
Technology diffusion, 285–287
Tektronix, Inc., 113
TELCOMP computer language, 91
Teletypewriters, 105
Terminate and stay resident (TSRs),

242
Testing, 89
The Norton Utilities version 1.0, 264
The Norton Utilities version 2.0, 265

Thompson, Ken, 85, 290–291
Time, 217

Time-Shared BASIC, 134
time-sharing, 37

Tinkerer, 171–172
Tinkering, 172

with personal computers, 174–176
Tiny BASIC, 110–112, 294
Tom Swift Terminal, 58
Toolbox, 157
Tower of Babel, 70–75
Trademagazines, 230
Trailing parameter, 180
TSRs. See Terminate and stay resident

(TSRs)
Turbo Pascal language, 270–274, 286,

340, 354
Turtle graphics, 88

U.S. Computer literacy programs,
60–61

Ubiquitous computing, 202
Unerase program, 264
Unions, 297
University degrees in disciplines, 5
Unix, 85, 170, 202, 206, 216, 221–222,

227, 246–247, 278, 290–292,
297, 299, 301, 350, 363

Unix-based systems, 9
Unix/Xenix, 21
Unrestricted Go To statements, 143
User-defined subprograms, 196
User experience (UX), 161
Utility programs, 183, 264

Value added resellers (VARs), 333
Variables, 196
VARs. See Value added resellers (VARs)
VAX 11–780minicomputers, 15



390 Index

VBA. See Visual Basic for Applications
(VBA)

VGA. See Video graphics array (VGA)
Video game

for IBM PCs, 260
programming, 318

Video graphics array (VGA), 339
Visual Basic, 144, 352

Visual Basic 4.0, 164
Visual Basic forWindows,

157–158
Visual Basic for Applications (VBA),

157
Visual J++ development system, 273
Visual SourceSafe 5.0, 349

Waite Group’s Macintosh Primers,
192–200

Waite, Mitchell, 169, 192–195, 299,
301, 318, 337, 350

See also TheWaite Group
Warren, Jim, 105, 111, 129, 322–323,

328–332
Watt, Daniel, 94–96
WEND keyword, 197
West Coast Computer Faire, 322,

328–332
while loop, 197, 293
Whole Earth Catalog, 41–44, 55
Wilkes, Maurice, 18, 75–76
Win32 API, 352
Windows. See also AppleMacintosh

(Mac OS); MS-DOS
class, 315

OS/2, 227
platform, 238
procedure, 313
Windows 3.1, 350
Windows 95, 350
Windows NT operating system,

324, 350
Windows API, 164, 311
Windows SDK, 352
Windows software development, 346

kit, 354
Windows. See alsoMacintosh (Mac);

MS-DOS
platform, 238

“Wintel” platform, 200
Wiredmagazine, 223–224
Wirth, Niklaus, 19, 151, 271
Wolverton, Van, 176–183, 281
Woodcock, JoAnne, 178, 281–283
Wozniak, Steve, 59–60, 192, 329
Wrox Press, 352
Wrox programming primers, 353

Xanadu, 45
Xenix, 247, 281–282

YouTube, 5, 229, 302

Zaks, Rodnay, 19, 271–272
Zbikowski, Mark, 279, 281
Zilog Z80microprocessor, 318


	I LEARNING TO CODE
	1 How Important is Programming?
	1.1 Programming Culture
	1.2 Learning a Language
	1.3 New Ways of Thinking
	1.4 Equity and Access
	1.5 Personal Connections
	1.6 Manifestos of the Movement
	1.7 A New History of Personal Computing





